Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System

نویسندگان

  • Min-Hwi Kim
  • Joon-Young Park
  • Jae-Weon Jeong
چکیده

The main objective of this study was to develop a thermoelectric heat pump and liquid desiccant system based on a dedicated outdoor air system (THPLD-DOAS). An internally-cooled and -heated liquid desiccant system was used and a thermoelectric heat pump (THP) served as the desiccant cooling and heating energy source for dehumidification and regeneration of the desiccant solution, respectively. In order to investigate the energy-saving potential of the proposed system, its thermal performance and operating energy consumption during the cooling season were compared to those of a conventional dedicated outdoor air system with a ceiling radiant cooling panel system (DOAS-CRCP). Detailed simulations for each system were conducted under hot and humid climatic conditions. Their thermal performance under various room sensible heat factor (RSHF) conditions was evaluated to observe the energy performance, depending on the dehumidification performance, of the liquid desiccant system integrated with the THP. The results showed that the coefficient of performance (COP) of the THP ranged from 0.8 to 1.2 to maintain a sufficient dehumidification rate. The operating energy of the THPLD of the proposed system was 6.6% to 16.0% less than that of the chiller operating energy of a conventional DOAS. Consequently, the proposed system consumed 0.6–23.5% less operating energy compared to the conventional DOAS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package

This report summarizes a research/demonstration project in which a new high school facility was designed and constructed to combine a custom built 230 kW cogeneration package with four integrated active desiccant rooftop (IADR) systems to serve as high-efficiency dedicated outdoor air systems (DOAS). The IADR systems were modified to include hot water coils to use the waste heat provided by the...

متن کامل

Development of a Pilot Plant Solar Liquid Desiccant Air Conditioner for the Northern Region of Iran

In a 10-ton capacity pilot plant solar liquid desiccant air conditioner (LDAC) developed, dehumidification of the outside air is achieved through a honeycomb packed-bed heat and mass exchanger, using lithium chloride solution as the desiccant. The dry air obtained from the dehumidification process is evaporative cooled inside a cooling pad and directed into the conditioned space. The dilute sol...

متن کامل

Experimental Investigation of a New Enthalpy Exchanger with Low Absorbent Carryover Designed for Liquid Desiccant Dehumidification System

In this paper, the absorbent carryover effect in a designed counter-flow enthalpy exchanger is investigated. In a built prototype of the liquid desiccant dehumidifier, air and the absorbent solution are in contact and flow through a packed multi-channel polymer tower in a counter-flow pattern. To avoid the absorbent carryover, the tower is equipped with an eliminator. Experimental measurements ...

متن کامل

An investigation of heat and mass transfer enhancement of air dehumidification with addition of γ-Al2O3 nano-particles to liquid desiccant

This study introduces an experimental and theoretical investigation of the performance of a proposed air dehumidification system using a nanofluid of γ-alumina nano-particles in LiBr/H2O as a desiccant. Comparative experiments organized using a central composite design were carried out to evaluate the effects of six numerical factors (air velocity, desiccant flow rate, air humidity ratio, desic...

متن کامل

Research on Energy Saving Potential for Dedicated Ventilation Systems Based on Heat Recovery Technology

Research results have identified the use of heat pipe heat exchangers (HPHXs) for heat recovery as a way to reduce the pre-cooling and re-heating energy. This paper suggests decoupling dehumidification from cooling to reduce energy consumption. The feasible usage and the energy saving potential of heat pipe heat exchanger at the air handler dedicated in accomplishing this objective is investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017